Packing A-paths in Group-Labelled Graphs via Linear Matroid Parity

نویسنده

  • Yutaro Yamaguchi
چکیده

Mader’s disjoint S-paths problem is a common generalization of matching and Menger’s disjoint paths problems. Lovász (1980) suggested a polynomial-time algorithm for this problem through a reduction to matroid matching. A more direct reduction to the linear matroid parity problem was given later by Schrijver (2003), which leads to faster algorithms. As a generalization of Mader’s problem, Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour (2006) introduced a framework of packing non-zero A-paths in group-labelled graphs, and proved a min-max theorem. Chudnovsky, Cunningham, and Geelen (2008) provided an efficient combinatorial algorithm for this generalized problem. On the other hand, Pap (2007) introduced a framework of packing non-returning A-paths as a further genaralization. In this paper, we discuss possible extensions of Schrijver’s reduction technique and the algorithm of Chudnovsky, Cunningham, and Geelen to another framework introduced by Pap (2006), under the name of the subgroup model, which apparently generalizes but in fact is equivalent to packing non-returning A-paths. We provide a necessary and sufficient condition for the groups in question to admit a reduction to the linear matroid parity problem. As a consequence, we give faster algorithms for important special cases of packing non-zero A-paths such as odd-length A-paths. In addition, it turns out that packing non-returning A-paths admits a reduction to the linear matroid parity problem, which leads to its efficient solvability, if and only if the size of the input label set is at most four.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity

Mader’s disjoint S-paths problem unifies two generalizations of bipartite matching: (a) nonbipartite matching and (b) disjoint s–t paths. Lovász (1980, 1981) first proposed an efficient algorithm for this problem via a reduction to matroid matching, which also unifies two generalizations of bipartite matching: (a) non-bipartite matching and (c) matroid intersection. While the weighted versions ...

متن کامل

The Cycling Property for the Clutter of Odd st-Walks

A binary clutter is cycling if its packing and covering linear program have integral optimal solutions for all Eulerian edge capacities. We prove that the clutter of odd stwalks of a signed graph is cycling if and only if it does not contain as a minor the clutter of odd circuits of K5 nor the clutter of lines of the Fano matroid. Corollaries of this result include, of many, the characterizatio...

متن کامل

Improved Approximations for k-Exchange Systems

Submodular maximization and set systems play a major role in combinatorial optimization. It is long known that the greedy algorithm provides a 1/(k + 1)-approximation for maximizing a monotone submodular function over a k-system. For the special case of k-matroid intersection, a local search approach was recently shown to provide an improved approximation of 1/(k+ δ) for arbitrary δ > 0. Unfort...

متن کامل

Algebraic Algorithms in Combinatorial Optimization

In this thesis we extend the recent algebraic approach to design fast algorithms for two problems in combinatorial optimization. First we study the linear matroid parity problem, a common generalization of graph matching and linear matroid intersection, that has applications in various areas. We show that Harvey’s algorithm for linear matroid intersection can be easily generalized to linear mat...

متن کامل

Applications of the Linear Matroid Parity Algorithm to Approximating Steiner Trees

The Steiner tree problem in unweighted graphs requires to find a minimum size connected subgraph containing a given subset of nodes (terminals). In this paper we investigate applications of the linear matroid parity algorithm to the Steiner tree problem for two classes of graphs: where the terminals form a vertex cover and where terminals form a dominating set. As all these problems are MAX-SNP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014